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Abstract
For many-particle systems defined on lattices we investigate the global structure
of effective Hamiltonians and observables obtained by means of a suitable basis
transformation. We study transformations which lead to effective Hamiltonians
conserving the number of excitations. The same transformation must be used to
obtain effective observables. The analysis of the structure shows that effective
operators give rise to a simple and intuitive perspective on the initial problem.
The systematic calculation of n-particle irreducible quantities becomes possible
constituting a significant progress. Details on how to implement the approach
perturbatively for a large class of systems are presented.

PACS numbers: 75.10.−b, 75.40.Gb, 03.65.−w, 02.30.Mv

1. Introduction

Effective models are at the very centre of theoretical physics since they allow us to focus on
the essential physics of a problem without being distracted by unnecessary complexity. Hence
it is very important to make use of systematic means to derive effective models. Here we
will present the mathematical structure of a certain kind of effective model, namely effective
models where the elementary excitations above the ground state can be viewed as particles
above a complex vacuum. This type of view is very common in low-temperature physics.
Many experiments can be understood on the basis of this picture.

In this paper, we will elucidate the global structure of the Hamiltonian and of the
observables if the model is transformed to a model which conserves the number of particles.
Such a mapping is often possible and renders the subsequent calculation of physical quantities
much easier. The determination of the effective Hamiltonian is facilitated by the decomposition
into n-particle irreducible parts. We set up such a classification at zero temperature for strong-
coupling situations, i.e. no weak-coupling limit is needed and no non-interacting fermions or
bosons are required. Generically, we deal with hard-core bosons.

The necessity for the decomposition into n-particle irreducible parts has arisen in
perturbative calculations of the effective Hamiltonians because only the n-particle irreducible
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interactions are independent of the system size. The second main point of this paper is the
perturbative computation of effective Hamiltonians and observables. Such computations are
a standard technique for ground-state energies (zero-particle terms) and dispersion relations
(one-particle terms) (see [1] and references therein). But the possibility of computing multi-
particle contributions has only recently been realized [2–4] and continues to be exploited
intensively. The key ingredient is to define a similarity transformation on the operator level
(see below).

A promising alternative route, which we can only sketch in this paper, consists in the
non-perturbative, renormalizing realization of the transformation of the initial model to the
effective model which conserves the number of particles. Examples of this approach are
realized in fermionic models [5–7].

1.1. Starting point

We consider models which are defined on a lattice �. At each site of the lattice the system
can be in a number d of states spanning the local Hilbert space. Let us assume that d is finite.
The dynamics of the system is governed by a Hamiltonian H acting in the tensor-product
space of the local Hilbert spaces. For simplicity we do not consider antisymmetric, fermionic
situations although this is also possible. So we are focusing on physical systems which can
be described in terms of hard-core bosons.

The Hamiltonian H is assumed to be of finite range. This means that it is composed of
local operators hν acting on a finite number of sites in the vicinity of the site ν,

H =
∑
ν ∈�

hν. (1)

We further assume that H can be split as

H(x) = U + xV (2)

so that the spectrum of U is simple (see below) and that the system does not undergo a phase
transition from x = 0 to the range of values we are finally interested in. These requirements
do not necessarily imply that x has to be small. But it is helpful if this is the case.

The ground state of U and its lowest lying eigen-states shall be known. The latter will
be viewed as elementary excitations from which the whole spectrum can be built. We assume
that we can view the elementary excitations above the ground state as (quasi-)particles above
the vacuum. For simplicity, we will drop the prefix ‘quasi-’; it is understood that ‘particle’ is
a synonym for elementary excitation.

We assume that the physical picture sketched for H(x = 0) = U is linked continuously
to the range 0 � x � xc where xc is the critical value at which a phase transition occurs. At
the critical value xc the picture breaks down and cannot be used beyond x = xc. Generically,
a mode of H(x) will become soft at xc.

Furthermore, the particles for x = 0 shall be local in the sense that we can assign a site
to each of them. Let Q be the operator that counts the number of particles.

As a concrete example, the reader may think of an antiferromagnetic Heisenberg model
made up from strongly coupled (coupling J ) pairs of spins (‘dimers’) which are weakly
coupled (coupling xJ ) among themselves (e.g. [3, 8]). At x = 0, the ground state is the
product state with singlets on all dimers; the elementary excitations are local triplets. The
number of these local triplets, i.e. the number of dimers which are not in the singlet state, shall
be given by the operator Q.

A considerable simplification of the problem can be achieved by mapping the initial
problem H(x) to an effective Hamiltonian Heff(x) in which the number of elementary
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excitations does not change. That is the number of particles should be a conserved quantity.
Then the computation of many physical quantities is significantly simplified.

In this paper, we advocate using a continuous unitary transformation (CUT) [8–11]
in order to achieve a systematically controlled mapping of the kind described above which
leads to

[Heff,Q] = 0 (3)

i.e. Heff conserves the number of particles. Such an approach has three major advantages:

1. Conceptual clarity. Using a unitary transformation guarantees that no information of the
original model is lost. In particular, it is clear that the same transformation [9, 12–14] can
be applied to obtain the effective observables Oeff from the original observables O.

2. Technical simplicity. To implement the unitary transformation in a continuous fashion only
the computation of commutators is required since the mapping is split into infinitesimal
steps leading to a differential equation [9]

∂�H = [η(�),H(�)] (4)

where l ∈ [0,∞] is an auxiliary parameter parametrizing the continuous transformation
with starting point � = 0 and end point � = ∞.

3. Good controllability. By an appropriate choice of the infinitesimal generator η of the
transformation it can be designed such that it preserves block-band diagonality [8, 11].
Moreover, it is renormalizing in the sense that matrix elements between energetically very
different states are transformed more rapidly than those between energetically adjacent
states [5, 6, 11].

We would like to point out, however, that the general structure of operators does not
depend on the details of the method by which the effective particle-conserving model is
obtained. Also methods other than CUTs are conceivable.

In the present paper we will focus on perturbative realizations of the CUTs. This approach
[8] was the first which realized the computation of bound states in higher orders [2, 3]. The
concept of a similarity transformation is indispensable for a conceptually clear computation
of multi-particle effects [4, 15].

1.2. Set-up

In section 2 we analyse global structural aspects of effective operators. The basic prerequisite
will be equation (3). Furthermore, we show that the linked cluster property holds. Therefore
the effective operators which hold in the thermodynamic limit can be computed in finite
systems.

Section 3 is a preparatory section in which the perturbative CUT for Hamilton operators of
a certain kind is constructed. Low-dimensional spin models on lattices are among the models
which can be treated in this way.

Section 4 contains a detailed description of how the perturbative CUT can be extended
to transform general observables. Series expansions in x for the effective observables are
obtained which allow us to compute the experimentally relevant spectral functions. So the
extension from Hamiltonians to observables is an important one.

The paper is concluded in section 5.

2. The structure of effective operators

In this section, we assume that we are able to construct a mapping such that Heff fulfils
equation (3). The eigen-states of the particle number operator Q serve as a basis for the
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Hilbert space of the system. If the mapping is realized perturbatively, the matrix elements of
Heff and Oeff are polynomials in x.

2.1. The effective Hamiltonian

2.1.1. Global structure. We will show that Heff can be written as

Heff = H0 + H1 + H2 + H3 + · · · (5)

where Hn is an n-particle irreducible operator, i.e. Hn measures n-particle energies. Moreover,
each thermodynamic matrix element of any of the components Hn can be obtained on finite
clusters for a given order in x if the original Hamiltonian is of finite range. The components
Hn can be defined recursively in ascending order in n.

Equation (5) comprises already a route to determine the properties of Heff in a sequence of
approximate treatments. The very first step is to know the ground-state energy which defines
H0. The second level is to describe the dynamics of a single particle (elementary excitations)
correctly which is possible by knowing H1. The third level is reached if H2 is included which
contains the information on the interaction of two particles. True three-particle interactions
are contained in H3 and so on. From the generic experience in condensed matter theory,
the three- and more particle terms can very often be neglected. So the first three terms in
equation (5) provide the systematically controlled starting point of a broad class of problems.

Let us clarify some notation. We define the following eigen-states of the particle number
operator Q,

|0〉 ground state (particle vacuum)

|i〉 state with one particle on site i
(6)

|i1i2〉 state with two particles on sites i1 and i2

...

i.e. Q|0〉 = 0|0〉,Q|i〉 = 1|i〉 and Q|ij 〉 = 2|ij 〉 and so on. These states span the global
Hilbert space E of the physical system under study. Dealing with (hard-core) bosons |i1i2〉
and |i2i1〉 are identical states. This indistinguishability causes a certain ambiguity. This
ambiguity can be remedied for instance by assuming that coefficients depending on several
indices i1i2 . . . in are even under permutation of any pair of these indices1. For simplicity, the
ground state |0〉 is assumed to be unique.

Let R be an arbitrary operator acting on E and conserving the number of particles
[R,Q] = 0. By R|n we denote the restricted operator acting on En ⊂ E spanned by all states
with exactly n particles.

Now we define the operators Hn

H0 := E01 (7a)

H1 :=
∑
i;j

tj ;ie
†
j ei (7b)

H2 :=
∑

i1i2;j1j2

tj1j2;i1i2e
†
j1
e
†
j2
ei2ei1 (7c)

1 Another way to deal with the ambiguity would be to introduce a certain ordering among the indices. Then only
one representative of the two (or more) identical states needs to be kept [3, 13].
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...

Hn :=
∑

i1...in;j1...jn

tj1...jn;in...i1e
†
j1

. . . e
†
jn

ein . . . ei1 (7d )

where 1 is the identity operator. Note that these operators are defined on the full Hilbert space E .
The operators e

(†)
i are local operators that annihilate (create) particles at site i. They are

bosonic operators. Their definition can be tailored to include a hard-core repulsion between
the particles to account for the common situation that at maximum one of the particles may be
present at a given site i. If the particles have additional internal quantum numbers, i.e. if there
can be different particles at each site, the indices i and j are substituted by multi-indices i
and j.

As an example let us consider that there are three kinds of particles per site, but that at
maximum one of these particles can occupy a given site. Then each site corresponds to a four-
level system; the particles are hard-core bosons. Such a situation arises in antiferromagnetic
dimerized spin systems where each dimer represents a four-level system. The ground state
is the unique singlet while the three particles are given by the three-fold degenerate triplet
states. In this case we have the multi-indices i = (i, α), where i denotes the site and α

takes for instance the three values of the Sz component α ∈ {−1, 0, 1}. In the local basis
{|i, s〉, |i,−1〉, |i, 0〉, |i, 1〉}, where s denotes the singlet, the local creation operators e

†
i,α are

the 4 × 4 matrices

e
†
i,−1 =




0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 (8a)

e
†
i,0 =




0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0


 (8b)

e
†
i,1 =




0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0


 . (8c)

It is understood that the action at all other sites but i is the identity so that the operators in
(8) are defined on the whole Hilbert space. The annihilation operators ei,α are given by the
Hermitian conjugate matrices. All possible commutators can easily be computed within the
matrix representation. Finite matrix elements in the lower right 3 × 3 block can be viewed as
combined annihilation and creation processes: the matrix Mα,β with all elements zero except
the one at (α, β) corresponds to the process e

†
i,αei,β . A finite matrix element in the upper left

1 × 1 block, i.e. the singlet–singlet channel, can be expressed in normal-ordered fashion as
14 −∑

α e
†
i,αei,α . In this way the operators (8) and their Hermitian conjugate define a complete

algebra which in turn enables us to classify contributions of the Hamiltonian according to the
number of particles affected as done in equations (5) and (7).

The decomposition (5) is physically very intuitive. Yet the next important question is
whether and how the operators Hn are unambiguously defined. This issue is addressed by
noting that Hn|m vanishes for m < n. This follows directly from the normal ordering of
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the creation and annihilation operators in equation (7). Then we can proceed iteratively by
requiring that Heff applied to n particles corresponds to H0 + H1 + · · · + Hn (n arbitrary but
fixed). Solving for Hn yields the recursions

H0|0 := Heff|0 (9a)

H1|1 := Heff|1 − H0|1 (9b)

H2|2 := Heff|2 − H0|2 − H1|2 (9c)

...

Hn|n := Heff|n −
n−1∑
i=0

Hi |n. (9d )

Assuming that Heff is calculated beforehand one starts evaluating E0 by means of the first
definition. The result entirely defines H0. The restriction H0|1 is then used in the second
equation to extract the tj ;i of H1 and so on. Generally, Hn is defined on the full many-particle
Hilbert space, not only for n particles. But it is sufficient to know the action of Hn on the
subspace of n particles to determine all its matrix elements in (7). It is the essential merit of
the notation in second quantization (7) that it provides the natural generalization of the action
of a part of the Hamiltonian on a finite number of particles to an arbitrary number of particles.
Since equation (9d ) holds for any number of particles and since Hn|m vanishes for m < n

we obtain equation (5), neglecting the precise definition of convergence which is beyond the
scope of the present paper.

In conventional many-body language, Hn stands for the n-particle irreducible interaction.
The subtractions in equation (9) ensure that Hn contains no reducible contributions, i.e.
contributions which really act only on a lower number of particles. It should be emphasized
that the formalism above does not require that a simple free fermionic or bosonic limit exists.
It is possible to start from any type of elementary particle counted by some operator Q.

Moreover, the formalism presented in this section does not depend on how Heff is obtained.
It does not matter whether a perturbative, a renormalizing procedure or a rigorously exact
method was used to obtain Heff .

2.1.2. Cluster additivity. Here we focus on formal aspects of a perturbative approach
generalizing results obtained previously for zero-particle properties [16] and for one-particle
properties [17]. The feature that the Hamiltonian is of finite range on the lattice is exploited.
Then equations (9) can be evaluated on finite subsystems (clusters, see below). Still, the
thermodynamically relevant matrix elements of the operators Hn are obtained as we show in
the following paragraphs.

To proceed further definitions are needed. A cluster C of the thermodynamic system is
a finite subset of sites of the system and their linking bonds. By RC we denote an operator
which acts only on the Hilbert space EC of C. If C̄ denotes the sites of the total system which
are not included in C, the restricted operator RC is lifted naturally to an operator R in the total
Hilbert space E = EC ⊗ E C̄ by

R := RC ⊗ 1C̄ . (10)

Note that it is not possible to define a restricted operator RC from an arbitrary operator R
acting on E since R will not have the product structure (10) in general.

Two clusters A and B are said to form a disconnected cluster C = A ∪ B iff they do not
have any site in common A∩B = 0 and there is no bond linking sites from A with sites from B.
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Otherwise the clusters A and B are said to constitute together a linked cluster C = A ∪ B.
Given a disconnected cluster C = A ∪ B an operator RC is called cluster additive iff it can be
decomposed as

RC = RA ⊗ 1B + 1A ⊗ RB. (11)

With these definitions we show that Heff and Hn are cluster additive. But Heff|n is not!
This will turn out to be another important reason to introduce the Hn.

The cluster additivity of HC
eff is obvious since A and B are assumed to be disconnected.

So they can be viewed as physically independent systems. Hence

HC
eff = HA

eff ⊗ 1B + 1A ⊗ HB
eff . (12)

Similarly, we deduce from (9) the operators HA
n and HB

n which act on EA and EB , respectively.
Then it is straightforward to verify that the operators

HC
n = HA

n ⊗ 1B + 1A ⊗ HB
n (13)

fulfil the recursion (9) for the operators defined for the cluster C. Hence the operators Heff and
Hn are indeed cluster additive.

It is instructive to see that Heff|n is not cluster additive, contrary to what one might have
thought. Let us consider the tentative identity

HC
eff

∣∣
n

= HA
eff

∣∣
n
⊗ 1B + 1A ⊗ HB

eff

∣∣
n
. (14)

This equation cannot be true since on the left-hand side the number of particles is fixed to
n while on the right-hand side the number of particles to which the identities 1A and 1B are
applied is not fixed. So no cluster additivity is given for the Heff|n.

The fact that cluster additivity holds only for particular quantities was noted previously
for n = 1 [17]. For n = 2, the subtraction procedure was first applied in the calculations
in [2] (though not given in detail). In [3, 4, 15, 20] the subtractions necessary to obtain
the irreducible two-particle interaction were given in more detail. The general formalism
presented in this paper shows on the operator level why such subtractions are necessary and
where they come from. Thereby, it is possible to extend the treatment to the general n-particle
irreducible interaction.

The notation in terms of second quantization (7) renders the cluster additivity almost
trivial. This is so since the creation and annihilation operators are defined locally for a certain
site. It is understood that the other sites are not affected. Hence the same symbol e

†
i can be

used independent of the cluster in which the site i is embedded. In particular, one identifies
automatically e

†,C
i with e

†,A
i ⊗1B if i ∈ A and with 1A ⊗e

†,B
i if i ∈ B. Hence cluster additivity

is reduced to trivial statements of the kind that

HA
1 =

∑
i,j∈A

tj ;ie
†
j ei (15a)

HB
1 =

∑
i,j∈B

tj ;ie
†
j ei (15b)

implies

HC
1 =

∑
i,j∈C

tj ;ie
†
j ei (16a)

=
∑
i,j∈A

tj ;ie
†
j ei +

∑
i,j∈B

tj ;ie
†
j ei (16b)

= HA
1 ⊗ 1B + 1A ⊗ HB

1 . (16c)
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In this sense, the notation in second quantization is the most natural way to think of cluster
additivity.

Following Gelfand and co-workers [1, 16, 17] we conclude that the cluster additive
quantities possess a cluster expansion. Hence all the irreducible matrix elements tj ;i possess
a cluster expansion and can be computed on finite clusters.

2.1.3. Computational aspects. Since Heff conserves the number of particles, i.e. equation (3),
its action is to shift existing particles. Let us denote the relevant matrix elements for a linked
cluster A by

EA
0 := 〈0|HA

eff|0〉 (17a)

aA
j ;i := 〈j |HA

eff|i〉 (17b)

aA
j1j2;i1i2

:= 〈j1j2|HA
eff|i1i2〉 (17c)

...

where the indices i, j, . . . may be multi-indices from now on. Put differently, EA
0 is the matrix

element of HA
eff

∣∣
0, the aA

j ;i are the matrix elements of HA
eff

∣∣
1, the aA

j1j2;i1i2
those of HA

eff

∣∣
2 and

so on. The number EA
0 is the ground-state energy of cluster A. The recursive definitions (9)

imply

tAj ;i = aA
j ;i − EA

0 δji (18a)

tAj1j2;i1i2
= aA

j1j2;i1i2
− EA

0 δj1i1δj2i2 − EA
0 δj1i2δj2i1 − tAj2;i2

δj1i1 − tAj1;i2
δj2i1 − tAj2;i1

δj1i2 − tAj1;i1
δj2i2

(18b)

tAj1j2j3;i1i2i3
= aA

j1j2j3;i1i2i3
− A0 − A1 − A2 (18c)

...

where A0 comprises six terms resulting from H0, A1 comprises 18 terms resulting from H1

and A2 comprises 36 terms resulting from H2. The explicit formulae are given in appendix A.
The recipe in deriving the above equations is straightforward. For a given n-particle process
{im} → {jm} (m ∈ {1, . . . , n}) one has to subtract all possible processes which move less
than n particles. Since the m-particle processes with m < n have been computed before the
procedure is recursive. Note that all coefficients must be computed for the same cluster.

The cluster additivity or, equivalently, the existence of a cluster expansion can be exploited
to compute the irreducible matrix elements on finite clusters given that the Hamiltonian is of
finite range. There are two strategies to do so.

The first strategy is to choose a cluster large enough to perform the intended computation
without finite-size effects. This strategy works particularly well if the dimensionality of the
problem is low. Let us assume for simplicity that the Hamiltonian links only nearest-neighbour
sites. Aiming at a given matrix element, for instance tAj1j2;i1i2

, which shall be computed in
a given order k, the large enough cluster Cl contains all possible subclusters Cs with two
properties: (i) they have k or less bonds, (ii) they link the concerned sites j1, j2, i1, i2 among
themselves2. Clearly, Cl depends on the order k. But it depends also on the sites j1, j2, i1, i2

2 Depending on the details of the interaction on the bonds it may be sufficient to consider smaller clusters than
mentioned in the main text, for instance a pure nearest-neighbour spin exchange reduces the range of virtual excursions.
Frustration is another mechanism which reduces the range of the effective processes, see e.g. the Shastry–Sutherland
model [3, 18, 19].
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under study so that the notation C
(k)
l ({j1, j2, i1, i2}) is appropriate. Note that the order of the

sites does not matter.
If some sites are omitted the constraints for the subclusters Cs are diminished since less

sites must be linked. This implies in particular C
(k)
l ({j1, j2, i1, i2}) ⊂ C

(k)
l ({j1, i1}). Hence

there can be a cluster A which contains C
(k)
l ({j1, j2, i1, i2}) but does not contain C

(k)
l ({j1, i1})

so that the hopping matrix element tAj1;ii is not the thermodynamic one, but the interaction
tAj1j2;i1i2

is without finite-size correction. So intermediate steps in the calculations (18) can
display finite-size effects although the final result does not. In [2, 3, 8, 13] we followed this
strategy.

The second strategy is to compute for a given order k the net contributions of all clusters
C with m � k bonds which link the sites under study. The advantage of this approach is
that only smaller clusters need to be treated (�k bonds). The price to pay is an overhead in
determining the net contribution. This requires to deduct from the total contribution of C the
contributions of all subclusters of C with fewer bonds which link the points under study. This
must be done in order to avoid double counting. More details on this strategy can be found
in [1].

For Hamiltonians with relatively simple topology, the second strategy is more powerful.
For more complicated Hamiltonians, however, the task of implementing the overhead without
flaw can quickly become impracticable while the first strategy can still be used, at least up to
a certain order of the perturbation.

2.2. Effective observables

An effective Hamiltonian conserving the number of particles is useful to determine
characteristic energies of the considered systems. But it is not sufficient to determine physical
quantities which require more knowledge than the eigen-energies of the system. In particular,
we aim at determining dynamic correlations such as 〈O(t)O(0)〉. Then the mapping of the
original Hamiltonian H to the effective Hamiltonian Heff must be extended to a mapping of
the original observable O to the effective observables Oeff . Here we will assume that this has
been achieved by an appropriate unitary transformation, for instance in a continuous fashion
as described in the introduction.

2.2.1. Global structure. The structure of the observables can be described best by using
the notation of second quantization. Thereby it can be denoted clearly how many particles
are involved. The most important difference compared to the Hamiltonian is that there is
no particle conservation. Generically an observable creates and annihilates excitations, i.e.
particles. Hence we define the operators

Od,n :=
∑

i1···in;j1···jn+d

wj1···jn+d ;i1···ine
†
j1

· · · e†jn+d
ein · · · ei1 . (19)

The local operators ei have been described after equation (7). Again they shall appear normal-
ordered, i.e. all creation operators are sorted to the left of the annihilation operators. The first
index d indicates how many particles are created (d � 0) or annihilated (d < 0) by application
of Od,n. The second index n � 0 denotes how many particles have to be present before the
operator Od,n becomes active. The result of Od,n acting on a state with less than n particles is
zero.
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Table 1. List of terms appearing in the partial observables Od,n which form together the effective
observable Oeff according to equation (20). No prefactors or indices are given for clarity.

n

d 0 1 2 3

· · · · · · · · · · · · · · ·
−3 0 0 0 eee

−2 0 0 ee e†eee

−1 0 e e†ee e†e†eee

0 1 e†e e†e†ee e†e†e†eee

1 e† e†e†e e†e†e†ee e†e†e†e†eee

2 e†e† e†e†e†e e†e†e†e†ee e†e†e†e†e†eee
· · · · · · · · · · · · · · ·

In analogy with equation (5) the effective observables can be decomposed into partial
observables like

Oeff =
∞∑

n=0

∑
d�−n

Od,n. (20)

The additional feature in comparison to equation (5) is the sum over d. Table 1 sketches the
structure of the terms appearing in the partial observables Od,n.

Let us assume that we computed Oeff by some technique, for instance by a CUT. Then
the partial observables can be determined recursively by

Od,0|0→0+d := Oeff|0→0+d (21a)

Od,1|1→1+d := Oeff|1→1+d − Od,0|1→1+d (21b)

Od,2|2→2+d := Oeff|2→2+d − Od,0|2→2+d − Od,1|2→2+d

...

Od,n|n→n+d := Oeff|n→n+d −
n−1∑
i=0

Od,i |n→n+d . (21c)

Here |n→n+d denotes the restriction of an operator to act on the n-particle subspace En (domain)
and to yield states in the (n + d)-particle subspace En+d (co-domain). The recursion is set up
in analogy with (9). It is again used that an operator Od,n effectively vanishes if it is applied
to fewer than n particles. Barring possible problems to define convergence, the validity of the
recursion (21) for all d and n implies the decomposition (20).

As for the Hamiltonian the partial observables Od,n can be viewed as the n-particle
irreducible part of the particular observable. The notation in second quantization elegantly
resolves the question how the observables act on clusters as was explained in section 2.1.2.
Hence definition (19) ensures cluster additivity and there exist cluster expansions for the partial
observables. So they can be computed on finite clusters.

If dynamical correlations at zero temperature T = 0 shall be described, the observables
are applied to the ground state |0〉 which is the particle vacuum [6]. Then only the partial
observables Od,0 with d � 0 matter. According to (21a) no corrections are necessary, i.e. the
structure of the relevant part of the effective observable is given by

OT =0
eff = O0,0 + O1,0 + O2,0 + O3,0 + · · · . (22)
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This structure has been used so far in a number of investigations of spectral weights
[21, 22] and spectral densities [13, 14, 23]. It turned out that it is indeed sufficient to
consider a restricted number of particles [13, 14, 22]. But the question how many particles
are required to describe a certain physical quantity sufficiently well depends on the considered
model, the chosen basis (What do we call a particle?) and the quantity under study.

At finite temperatures a certain number of particles will already be present in the system
due to thermal fluctuations. Then the action of the partial observables Od,n with n � 1 will
come into play as well. This constitutes an interesting route to extend the applicability
of effective models, which were derived in the first place at zero temperature, to finite
temperatures.

2.2.2. Computational aspects. The recursive equations for matrix elements which can be
derived from (21) are very similar to those obtained for the Hamiltonian (18). We illustrate
this for the matrix elements of O1,n. Let the bare matrix elements on a cluster A be

vA
j := 〈j |OA

eff|0〉 (23a)

vA
j1j2;i := 〈j1j2|OA

eff|i〉
(23b)

... .

From (21) we obtain the irreducible elements as

wA
j = vA

j (24a)

wA
j1j2;i := vA

j1j2;i − wA
j1
δj2i − wA

j2
δj1i

(24b)
... .

As for the irreducible interactions the strategy is straightforward. One has to subtract from
the reducible n-particle matrix elements vA the contributions which come from the m-particle
irreducible matrix elements wA with m < n. With this strategy other irreducible matrix
elements can also be determined in a straightforward manner.

So far our considerations were general in the sense that it did not matter how we achieved
the mapping. Next we focus on the actual perturbative evaluation of the matrix elements on
finite clusters. For simplicity, we assume as before that the perturbative part of the Hamiltonian
links only nearest-neighbour sites. Let us consider for instance wA

j1j2;i . We assume that the
observable O is also local, i.e. acts on a certain site only, or is a sum of such terms. If
the observable is a sum of local terms then the transformation of each term separately and
subsequent summation yields the result. So without loss of generality we consider O to affect
only site p. Then we have to compute the matrix elements for clusters linking the four sites
j1, j2, i, p. If O itself is a product of operators affecting several sites pi then the observable
O itself links these sites pi . Apart from this difference compared to the matrix elements of
the effective Hamiltonian, we may copy the remaining steps from there.

There are again two strategies. Either the calculation in order k is performed on a cluster
Cl large enough so that all subclusters of k bonds linking the relevant sites j1, j2, i, p are
comprised in Cl [13, 14, 24, 25]. Or one has to add the net contributions of all different
clusters with k or fewer bonds which link the relevant sites j1, j2, i, p [23]. In either way the
results for spectral densities can be obtained.
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Figure 1. Block-band diagonal Hamilton matrix for N = 1 in the eigen-basis {|n〉} of the operator
Q which counts the number of particles. The unperturbed Hamiltonian H(x = 0) = U and the
effective Hamiltonian Heff have matrix elements in the dark areas only: [Heff ,Q] = 0. For the
non-degenerate ground state H00 is a 1 × 1 matrix. The dimension of Hnn grows roughly like Ln

with system size L. The perturbation V can lead to overlap matrices indicated as light boxes. The
empty boxes contain vanishing matrix elements only.

3. Transformation of the Hamiltonian

So far no particular property of the transformation providing the effective operators Heff and
Oeff was assumed. The only prerequisites were the existence of a counting operator Q, which
counts the number of elementary excitations, i.e. particles, and the conservation of this number
of particles by Heff : [Heff,Q] = 0.

Here we specify a particular transformation leading to [Heff,Q] = 0. This section is a
very brief summary of [8] which is necessary to fix the ideas and the notation for the subsequent
section dealing with the transformation yielding the effective observables.

For simplicity we restrict the considered systems in the following way: the problem can
be formulated as a perturbation problem as in equation (2) with the properties

(A) The unperturbed part U has an equidistant spectrum bounded from below. The
difference between two successive levels is the energy of a particle, i.e. Q = U .

(B) There is a number N 
 N > 0 such that the perturbing part V can be split
as V = ∑N

n=−N Tn where Tn increments (or decrements, if n < 0) the number of
particles by n: [Q,Tn] = nTn.

Condition (A) allows us to introduce the particularly simple and intuitive choice Q = U .
Note that the restrictions of (A) are not too serious in practice since very often the deviations
from an equidistant spectrum can be put into the perturbation V . Conditions (A) and (B)
together imply that the starting Hamiltonian H has a block-band-diagonal structure as depicted
in figure 1. The perturbation V connects states of different particle numbers only if the
difference is a finite number �N . Note that very many problems in physics display this
property, for a discussion of interacting fermions see [5, 6]. So far, most applications consider
N = 1 [3, 26] and N = 2 [2, 8, 10, 13, 14, 19, 22, 24, 25, 27], but calculations for higher N
are also possible [28].
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We solve the flow equation (4) for the Hamiltonian (2) obeying conditions (A) and (B)
perturbatively, that means up to a certain order in the expansion parameter x. The ansatz
used is

H(x; �) = U +
∞∑

k=1

xk
∑
|m|=k

F (�;m)T (m) (25)

with unknown real functions F(�;m) for which the flow equation (4) yields nonlinear recursive
differential equations [8]. The notation comprises

m = (m1,m2,m3, . . . , mk) with (26a)

mi ∈ {0,±1,±2, . . . ,±N} (26b)

|m| = k (26c)

T (m) = Tm1Tm2Tm3 · · · Tmk
(26d )

M(m) =
k∑

i=1

mi. (26e)

The second sum in ansatz (25) runs over all indices m of length |m| = k. Thereby, H(x; �)

includes all possible virtual excitation processes T (m) in a given order xk multiplied by the
weight F(�;m).

The optimum choice for the infinitesimal generator η of the unitary transformation reads

η(x; �) =
∞∑

k=1

xk
∑
|m|=k

sgn(M(m))F (�;m)T (m). (27)

In the eigen-basis {|n〉} of Q, i.e. Q|n〉 = n|n〉, the matrix elements of the generator η read

ηi,j (x; �) = sgn(Qi − Qj)Hi,j (x; �) (28)

with the convention sgn(0) = 0. This choice keeps the flowing Hamiltonian block-
band diagonal also at intermediate values of � [8, 11]. For � → ∞ the generator (28)
eliminates all parts of H(x; �) changing the number of particles so that [Heff,Q] = 0 with
Heff := H(� = ∞).

For the functions F(�;m) a set of coupled differential equations is determined by inserting
equations (25) and (27) in the flow equation (4) and comparing coefficients. The differential
equations are recursive [8]. The functions F of order k + 1, i.e. F(�;m) with |m| = k + 1,
are determined by the functions F of order k. The initial conditions are F(0;m) = 1 for
|m| = 1 and F(0;m) = 0 for |m| > 1. The functions are sums of monomials with structure
(p/q)�i exp(−2µ�), where p, q, i (µ > 0) are integers. This allows us to implement a
computer-aided iterative algorithm for the computation of the functions F [8].

The following symmetry relations hold

F(�;m) = F(�; (−mk, . . . ,−m1)) (29a)

F(�;m) = F(�; (−m1, . . . ,−mk))(−1)|m|+1. (29b)

Relation (29a) reflects the Hermiticity of the Hamiltonian. The block-band diagonality for
all � implies

F(�;m) = 0 for |M(m)| > N. (30)
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In the limit � → ∞ the coefficients C(m) := F(∞;m) are obtained. They are available
in paper form [8, 26] and electronically3. The effective Hamiltonian is given by the general
form

Heff(x) = U +
∞∑

k=1

xk
∑
|m|=k

M(m)=0

C(m)T (m) (31)

where M(m) = 0 reflects the conservation of the number of particles. The action of Heff can be
viewed as a weighted sum of particle-number conserving virtual excitation processes each of
which is encoded in a monomial T (m). We want to emphasize that the effective Hamiltonian
Heff with known coefficients C(m) can be used straightforwardly in all perturbative problems
that meet conditions (A) and (B).

4. Transformation of observables

To calculate physical quantities which do not only depend on the eigen-energies the relevant
observables must also be known. The conceptual simplicity of unitary transformations implies
that the observables must be subject to the same unitary transformation as the Hamiltonian.
In this section we describe how the perturbative CUT method can be extended to serve this
purpose.

Consider the observable O. It is mapped according to the flow equation

∂O(x; �)

∂�
= [η(x; �),O(x; �)] (32)

where the same generator η(x; �), given in equation (27), as in equation (4) is to be used to
generate the transformation. In analogy with equation (25) we employ the ansatz

O(x; �) =
∞∑

k=0

xk

k+1∑
i=1

∑
|m|=k

G(�;m; i)O(m; i) (33)

where the G(�;m; i) are real-valued functions for which the flow equation (32) yields recursive
differential equations. The operator products O(m; i) are given by

O(m; i) := Tm1 · · · Tmi−1OTmi
· · · Tmk

(34)

where we use the notation of equations (26). The integer i denotes the position in O(m, i)

at which the operator O is inserted into the sequence of the Tm. The starting condition is
O(x; 0) = O(x) and the final result is found at � = ∞: Oeff(x) := O(x;∞).

Inserting the ansatz (34) for O(x; �) and the generator η(x; �) from (27) into the flow
equation (32) yields

∞∑
k=0

xk
∑
|m|=k

k+1∑
i=1

∂

∂�
G(�;m; i)O(m; i) =

∞∑
k1=1

∞∑
k2=0

xk1+k2
∑

|m′|=k1
|m′′|=k2

k2+1∑
i=1

F(�;m′)G(�;m′′; i)

× sgn(M(m′))[T (m′),O(m′′; i)]. (35)

The functions F(�;m) are known from the calculations described in section 3 pertaining to
the transformation of the Hamiltonian. The sums denoted by expressions of the type |m| = k

run over all multi-indices m of length k.
3 The coefficients C(m) and C̃(m) will be published on the webpages www.thp.uni-koeln.de/∼gu and www.thp.uni-
koeln.de/∼ck.
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Comparing coefficients in equation (35) yields a set of recursive differential equations for
the functions G(�;m, i). To ease the comparison of coefficients we split a specific m with k
fixed into two parts as defined by i

m = (m l,m r) (36)

with |m l| = i − 1 and |m r | = k − i + 1 such that the splitting reflects the structure of O(m; i)

in (34). Then the explicit recursions can be denoted by

∂

∂�
G(�;m; i) =

∑
m l=(m a,m b)

m a =0

sgn(M(m a))F (�;m a)G(�; (m b,m r); i − |m a|)

−
∑

m r=(m a,m b)
m b =0

sgn(M(m b))F (�;m b)G(�; (m l,m a); i). (37)

The recursive nature of these equations becomes apparent by observing that the summations
m l = (m a,m b) and m r = (m a,m b) are performed over all non-trivial breakups of m l and
m r . For instance, the restriction m l = (m1,m2, . . . , mi−1) =̇ (m a,m b) with m a = 0 means
that one has to sum over the breakups

m a = (m1) and m b = (m2, . . . , mi−1)

m a = (m1,m2) and m b = (m3, . . . , mi−1)

...
...

m a = (m1,m2, . . . , mi−1) and m b = ( ). (38)

This implies that the G(�;m; i) appearing on the right-hand side of equation (37) are of order
k − 1 or less. Once they are known the function on the left-hand side of order k can be
computed. By iteration, all functions can be determined. The initial conditions follow from
O(x; � = 0) = O and read

G(0;m; 1) = 1 for |m| = 0 (39a)

G(0;m; i) = 0 for |m| > 0. (39b)

By iteration of (37), all functions can be determined.
We briefly discuss two examples to illustrate how equations (37) work. Let us assume

N = 2. All zero-order functions G(�; ( ), 1) are equal to 1. Since there is no breakup of ( ), as
would be required by the sums on the right-hand side of equations (37), the right-hand sides
vanish identically, whence G(�; ( ); 1) = 1 for all values of �.

The first-order function G(�; (1); 2) is given by

∂

∂�
G(�; ( 1︸︷︷︸

ml

); 2) = sgn [M((1))] F(�; (1)) · G(�; ( ); 1)

= e−�.1 (40)

where F(�; (1)) = e−� is taken from equation (15) in [8]. With the initial condition
G(0; (1); 2) = 0 from (39) the differential equation (40) yields

G(�; (1); 2) = 1 − e−l −−−→
�→∞

1. (41)

As a second example we consider a second-order function where we can use the above
result
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∂

∂�
G(�; (−2, 1︸ ︷︷ ︸

ml

); 3) = sgn [M((−2, 1))] F(�; (−2, 1))G(�; ( ), 1)

+ sgn [M((−2))] F(�; (−2))G(�; (1), 2) (42a)
= −(e−3� − e−�) · 1 − e−2� · (1 − e−�) (42b)
= e−� − e−2�. (42c)

Again the functions F are taken from equation (15) in [8]. Integrating the result (42c) using
the initial condition (39) leads to

G(�; (−2, 1); 3) = −e−� + 1
2 e−2� + 1 − 1

2 −−−→
�→∞

1
2 . (43)

This kind of calculation carries forward to higher orders. The functions G—like the functions
F—are sums of simple monomials (p/q)�i exp(−2µ�), where p, q, i (µ > 0) are integers.
Thus the integrations are always straightforward

∫ �

0
d�′�′i = 1

i + 1
�i+1 (44a)

∫ �

0
d�′�′i e−2µ�′ = i!

2µ


 1

(2µ)i
− e−2µ�

i∑
j=0

�j

j !(2µ)i−j


 (44b)

and can easily be implemented in a computer-algebraic program. The remaining
implementation follows very much the same line as described previously for the functions
F [8].

In analogy with equations (29) for F two symmetry relations hold for G. With m =
(m1, . . . , mk) they read

G(�;m; i) = G(�; (−mk, . . . ,−m1); k − i + 2) (45a)
G(�;m; i) = G(�; (−m1, . . . ,−mk); i)(−1)|m| (45b)

as can be shown by induction. The first symmetry (45a) holds ifO is Hermitian. Unfortunately,
there is no equivalence to equation (30) so that a possible initial block-band structure inO(x; 0)

is generically lost in the course of the transformation, i.e. for � > 0.
In the limit � → ∞ the coefficients C̃(m; i) := G(∞;m; i) ∈ Q are obtained as rational

numbers. So we retrieve finally

Oeff(x) =
∞∑

k=0

xk

k+1∑
i=1

∑
|m|=k

C̃(m; i)O(m; i) (46)

similar to equation (31). We will make the coefficients C̃(m; i) available electronically (see
footnote 3). Note that Oeff is not a particle-conserving quantity as is obvious from the fact
that the sum over |m| is not restricted to M(m) = 0. In order to see the net effect of
Oeff(x) on the number of particles explicitly it is helpful to split the bare operator accordingly
O = ∑N ′

n=−N ′ T ′
n, where T ′

n increments (or decrements, if n < 0) the number of particles by n:
[Q,T ′

n] = nT ′
n.

The difference between the bare initial observable O and the representation (46) must be
viewed as a vertex correction which comes into play since the bare initial excitations are not the
true eigen-excitations of the interacting system. We like to stress that the formalism presented
introduces the notions of n-particle irreducibility, vertex correction and so on without starting
from the limit of non-interacting conventional particles such as bosons or fermions.
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5. Conclusions

5.1. Summary

In this paper we have presented an approach to calculate energies and observables for quantum
multi-particle systems defined on lattices. The paper has two main parts. In the first part
(section 2), we assumed the existence of a mapping of the original problem to an effective one
in which the number of elementary excitations, the so-called (quasi-)particles, is conserved.
The general structure of the effective Hamiltonians and the observables is analysed. We found
that a classification of the various contributions in terms of the number of particles concerned
is most advantageous. To this end, we introduced a notation in second quantization which
does not, however, require non-interacting fermions or bosons. Generically, hard-core bosons
are involved.

We found the formulation in second quantization particularly intuitive. It provides in a
natural way the irreducible quantities on the operator level which display cluster additivity.
We would like to emphasize that the definition of irreducible operators is not a trivial task
if a strong-coupling situation is considered as was done in the present paper. No limit of
non-interacting bosons or fermions is assumed. Since the definition of irreducible operators
is completely general it allows us to compute the n-particle contribution for arbitrary n. For
instance, the formulae for the three-particle interactions are given for the first time in the
literature.

The irreducible interactions and vertex corrections possess a cluster expansion so that
they can be computed on finite clusters provided that the Hamiltonian is of finite range. This
property is the basis for the real-space treatment of many spin systems.

In the second part (sections 3 and 4), we described an actual mapping which provides
effective operators. The mapping is based on continuous unitary transformations. In this
paper we constructed the mapping perturbatively (see ‘outlook’). In section 3 the treatment of
the Hamiltonian is given. The computation of the effective Hamiltonian requires the solution
of a set of recursive nonlinear differential equations. For the perturbative set-up under study
these equations can be solved in full generality, i.e. no particular details of the model must be
known.

In section 4 we have given the calculational steps to compute effective observables. Again
recursive differential equations have to be solved. But they are linear since the transformation
of the Hamiltonian is known. For the perturbative set-up under study also the equations for
the observables can be solved in full generality, i.e. no particular details of the model need be
known.

The above approach has been used to compute spectral functions, i.e. dynamical
correlations, in a number of models [2, 3, 8, 10, 13, 14, 19, 22, 24–28]. These results
may serve as examples for the utility of the approach presented.

5.2. Outlook

We would like to point out two important consequences of the formulation of the effective
operators in second quantization. Both implications are based on the observation that the
irreducible operators are defined on the whole Hilbert space, i.e. not only for a small number
of particles. The matrix elements of the n-particle irreducible operators can be computed
considering only n particles. But the resulting operators hold for an arbitrary number of
particles.

(a) Consequence 1. The effective Hamiltonian is valid at finite temperatures. Hence it
is possible to extend the results obtained in the first place at zero temperature to finite
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temperatures. The technical difficulty arising is to treat the interactions properly, in
particular the hard-core constraint. But the description in terms of effective particles
helps to tackle this situation. Let us recall that at zero temperature no excitation, i.e.
no particle, is present. At low temperatures only a small density of particles will be in
the system. So it is well justified to use a ladder approximation. This approximation
is also suited to deal with the hard-core constraint (Brückner approach) [29, 30]. Note
that the problems linked to the existence of anomalous Green functions [30] do not occur
if the particle-conserving, effective Hamiltonian is used. Thus the Brückner approach
for the effective Hamiltonian after a suitable mapping [4, 8] is well justified and represents
a very promising route to treat finite temperatures.

(b) Consequence 2. So far the mapping to an effective model has been constructed
perturbatively. That means that all operators, the Hamiltonian H, the generator η and
the observables O, are given in a series of some small parameter x. In actual applications
these series are suitably extrapolated. But a certain caveat persists if the starting point
is a local Hamiltonian. Then a calculation up to a certain order describes processes of
a certain finite range only. This restriction can be partly overcome by extrapolating in
momentum space, e.g. for dispersion relations ω(k). But it is difficult to extrapolate the
matrix elements of the two-particle irreducible interaction because it is not diagonal in all
momenta.

This problem can be overcome by performing the continuous unitary transformation
directly on the level of the n-particle irreducible operators. An ansatz for the effective
Hamiltonian is chosen comprising for instance all possible irreducible n-particle terms
and similar terms creating and annihilating particles. This ansatz is inserted in the flow
equation (4). Comparison of the coefficients tj1...;i1... and ∂�tj1...;i1... in front of the terms
e
†
j1

. . . ei1
. . . yields coupled nonlinear differential equations. These differential equations

represent renormalization equations for the problem under study. We call this type of
transformation a self-similar one since the kinds of terms retained stay the same. Again,
the formulation in second quantization allows a significant generalization. We would like
to stress again that the approach presented does not require a weak-coupling limit. For
illustration, however, the reader is referred to the weak-coupling examples in [5–7].

(c) Concluding remark. In this paper we discussed the general structure of effective operators
and a perturbative unitary transformation to derive them. No concrete application
is presented since such applications can be found elsewhere. The two continuative
points above show along which lines the general structure can be exploited to extend the
applicability beyond zero-temperature results and beyond finite range processes. Work
along these lines is partly under way, but deserves definitely further attention.
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Appendix. Three-particle irreducible interaction

Here we complete the formulae for the irreducible three-particle interaction which was given
in equation (18). The corrections A0, A1 and A2 result from H0,H1 and H2, respectively, as
given in (9). They read
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A0 = EA
0

[
δj1i1 δ̃j2j3;i2i3 + δj1i2 δ̃j2j3;i1i3 + δj1i3 δ̃j2j3;i1i2

]
(A1a)

A1 = tAj1;i1
δ̃j2j3;i2i3 + tAj1;i2

δ̃j2j3;i1i3 + tAj1;i3
δ̃j2j3;i1i2 + tAj2;i1

δ̃j1j3;i2i3 + tAj2;i2
δ̃j1j3;i1i3 + tAj2;i3

δ̃j1j3;i1i2

+ tAj3;i1
δ̃j1j2;i2i3 + tAj3;i2

δ̃j1j2;i1i3 + tAj3;i3
δ̃j1j2;i1i2 (A1b)

A2 = δj1i1 t̃
A
j2j3;i2i3

+ δj1i2 t̃
A
j2j3;i1i3

+ δj1i3 t̃
A
j2j3;i1i2

+ δj2i1 t̃
A
j1j3;i2i3

+ δj2i2 t̃
A
j1j3;i1i3

+ δj2i3 t̃
A
j1j3;i1i2

+ δj3i1 t̃
A
j1j2;i2i3

+ δj3i2 t̃
A
j1j2;i1i3

+ δj3i3 t̃
A
j1j2;i1i2

(A1c)

where we used the shorthand

δ̃j1j2;i1i2 := δj1i1δj2i2 + δj1i2δj2i1 (A2a)

t̃Aj1j2;i1i2
:= tAj1j2;i1i2

+ tAj1j2;i2i1
+ tAj2j1;i1i2

+ tAj2j1;i2i1
. (A2b)

While the actual formulae are lengthy the underlying principle is straightforward (see the
main text). Note that in concrete realizations it is often advantageous to denote only one
representative of the states which does not change on interchange of particles (|ji〉 = |ij 〉).
Furthermore, certain problems allow us to exploit higher particular symmetries such as spin
rotation symmetry. Then additional permutation symmetries among the various quantum
numbers constituting the multi-index can be exploited leading to the appearance of exchange-
parity factors.
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